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Chapter 4

Drawing in 3D

Building on what we learned about the rendering pipeline in the previous chapter, we
will now begin our coverage of rendering in three dimensions.

Specifying Geometry in 3D

Cube Geometry

The object we will render in this chapter is a simple cube. It is easy to write the vertices
of a cube in code, avoiding the complexity of loading a 3D model for now. Here are the
vertices for the cube mesh:

const MBEVertex vertices[] =
{

{ .position = { -1, 1, 1, 1 }, .color = { 0, 1, 1, 1 } },
{ .position = { -1, -1, 1, 1 }, .color = { 0, 0, 1, 1 } },
{ .position = { 1, -1, 1, 1 }, .color = { 1, 0, 1, 1 } },
{ .position = { 1, 1, 1, 1 }, .color = { 1, 1, 1, 1 } },
{ .position = { -1, 1, -1, 1 }, .color = { 0, 1, 0, 1 } },
{ .position = { -1, -1, -1, 1 }, .color = { 0, 0, 0, 1 } },
{ .position = { 1, -1, -1, 1 }, .color = { 1, 0, 0, 1 } },
{ .position = { 1, 1, -1, 1 }, .color = { 1, 1, 0, 1 } }

};

25



26 Chapter 4. Drawing in 3D

Figure 4.1: The cube rendered by the sample app

We reuse the same MBEVertex struct from the previous chapter, which has a position
and color for each vertex. Since we have not introduced lighting yet, giving each vertex a
distinct color provides an important depth cue. As before, we create a buffer to hold the
vertices:

vertexBuffer = [device newBufferWithBytes:vertices
length:sizeof(vertices)
options:MTLResourceOptionCPUCacheModeDefault];

Index Buffers

In the previous chapter, we stored the vertices of our triangle in the order they were to
be drawn, and each vertex was used only once. In the case of a cube, each vertex belongs
to several triangles. Ideally, we would reuse those vertices instead of storing additional
copies of each vertex in memory. As models grow in size, vertex reuse becomes even
more important.

Fortunately, like most graphics libraries, Metal gives us the ability to provide an index
buffer along with our vertex buffer. An index buffer contains a list of indices into the ver-
tex buffer that specifies which vertices make up each triangle.

First, we define a couple of typedefs that will simplify working with indices:
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typedef uint16_t MBEIndex;
const MTLIndexType MBEIndexType = MTLIndexTypeUInt16;

Starting out, we will use 16-bit unsigned indices. This allows each mesh to contain up
to 65536 distinct vertices, which will serve our purposes for quite a while. If we need to
accommodate more vertices in the future, we can change these definitions, and our code
will adapt to the larger index size. Metal allows 16- and 32-bit indices.

Each square face of the cube is broken up into two triangles, comprising six indices. We
specify them in an array, then copy them into a buffer:

const MBEIndex indices[] =
{

3, 2, 6, 6, 7, 3,
4, 5, 1, 1, 0, 4,
4, 0, 3, 3, 7, 4,
1, 5, 6, 6, 2, 1,
0, 1, 2, 2, 3, 0,
7, 6, 5, 5, 4, 7

};

indexBuffer = [device newBufferWithBytes:indices
length:sizeof(indices)
options:MTLResourceOptionCPUCacheModeDefault];

Now that we have defined some geometry to work with, let’s talk about how to render a
3D scene.

Dividing Work between the View and the Renderer

In the previous chapter, we gave the MBEMetalView class the responsibility of rendering
the triangle. Now, we would like to move to a more sustainable model, by fixing the
functionality of the view, and offloading the job of resource management and rendering
to a separate class: the renderer.

Responsibilities of the View Class

The view class should only be concerned with getting pixels onto the screen, so we re-
move the command queue, render pipeline, and buffer properties from it. It retains the
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responsibility of listening to the display link and managing the texture(s) that will be
attachments of the render pass.

The new MBEMetalView provides properties named currentDrawable, which vends the
CAMetalDrawable object for the current frame, and currentRenderPassDescriptor,
which vends a render pass descriptor configured with the drawable’s texture as its pri-
mary color attachment.

The Draw Protocol

In order to do drawing, we need a way for the view to communicate with us that it’s
time to perform our draw calls. We decouple the notion of a view from the notion of a
renderer through a protocol named MBEMetalViewDelegate which has a single required
method: -drawInView:.

This draw method will be invoked once per display cycle to allow us to refresh
the contents of the view. Within the delegate’s implementation of the method, the
currentDrawable and currentRenderPassDescriptor properties can be used to create
a render command encoder (which we will frequently call a render pass) and issue draw
calls against it.

Responsibilities of the Renderer Class

Our renderer will hold the long-lived objects that we use to render with Metal, including
things like our pipeline state and buffers. It conforms to the MBEMetalViewDelegate
protocol and thus responds to the -drawInView: message by creating a command buffer
and command encoder for issuing draw calls. Before we get to that, though, we need to
talk about the work the draw calls will be doing.

Transforming from 3D to 2D

In order to draw 3D geometry to a 2D screen, the points must undergo a series of trans-
formations: from object space, to world space, to eye space, to clip space, to normalized
device coordinates, and finally to screen space.

From Object Space to World Space

The vertices that comprise a 3D model are expressed in terms of a local coordinate space
(called object space). The vertices of our cube are specified about the origin, which lies
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at the cube’s center. In order to orient and position objects in a larger scene, we need to
specify a transformation that scales, translates, and rotates them into world space.

You may recall from linear algebra that matrices can be multiplied together (concatenated)
to build up a single matrix that represents a sequence of linear transformations. We will
call the matrix that gathers together the sequence of transformations that move an object
into world space the model matrix. The model matrix of our cube consists of a scale trans-
formation followed by two rotations. Each of these individual transformations varies
with time, to achieve the effect of a pulsing, spinning cube.

Here is the code for creating the sequence of transformations and multiplying them to-
gether to create the world transformation:

float scaleFactor = sinf(5 * self.time) * 0.25 + 1;
vector_float3 xAxis = { 1, 0, 0 };
vector_float3 yAxis = { 0, 1, 0 };
matrix_float4x4 xRot = matrix_float4x4_rotation(xAxis, self.rotationX);
matrix_float4x4 yRot = matrix_float4x4_rotation(yAxis, self.rotationY);
matrix_float4x4 scale = matrix_float4x4_uniform_scale(scaleFactor);
matrix_float4x4 modelMatrix = matrix_multiply(matrix_multiply(xRot, yRot),

scale);

We use the convention that matrices are applied from right-to-left to column vectors, so
modelMatrix scales a vertex, then rotates it about the Y axis, then rotates it about the X
axis. The rotationX, rotationY and time properties are updated each frame so that this
transformation is animated.

From World Space to View Space

Now that we have our scene (the scaled, rotated cube) in world space, we need to po-
sition the entire scene relative to the eye point of our virtual camera. This transforma-
tion is called the view space (or, equivalently, the eye space or camera space) transformation.
Everything that will eventually be visible on screen is contained in a pyramidal shape
called the view frustum, illustrated below. The position of the virtual camera’s eye is the
apex of this viewing volume, the point behind the middle of the near plane of the view-
ing frustum.
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Figure 4.2: The view frustum. The apex of the frustum coincides with the eye of the
virtual camera.

Constructing the transformation for the camera requires us to think backwards: moving
the camera farther back is equivalent to moving the scene deeper into the screen, and
rotating the scene counterclockwise about the Y axis is equivalent to the camera orbiting
the scene clockwise.

In our sample scene, we want to position the camera a few units back from the cube.
We use the convention that world space is “right-handed,” with the Y axis pointing up,
meaning that the Z axis points out of the screen. Therefore, the correct transformation
is a translation that moves each vertex a negative distance along the Z axis. Equivalently,
this transformation moves the camera a positive distance along the Z axis. It’s all rela-
tive.

Here is the code for building our view matrix:

vector_float3 cameraTranslation = { 0, 0, -5 };
matrix_float4x4 viewMatrix = matrix_float4x4_translation(cameraTranslation);

From View Space to Clip Space

The projection matrix transforms view space coordinates into clip space coordinates.

Clip space is the 3D space that is used by the GPU to determine visibility of triangles
within the viewing volume. If all three vertices of a triangle are outside the clip volume,
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the triangle is not rendered at all (it is culled). On the other hand, if one or more of the
vertices is inside the volume, it is clipped to the bounds, and one or more modified trian-
gles are used as the input to the vertex shader.

Figure 4.3: An illustration of a triangle being clipped. Two of its vertices are beyond the
clipping bounds, so the face has been clipped and retriangulated, creating three new
triangles.

The perspective projection matrix takes points from view space into clip space via a se-
quence of scaling operations. During the previous transformations, the w component
remained unchanged and equal to 1, but the projection matrix affects the w component
in such a way that if the absolute values of the x, y, or z component is greater than the
absolute value of the w component, the vertex lies outside the viewing volume and is
clipped.

The perspective projection transformation is encapsulated in the matrix_float4x4_perspective
utility function. In the sample code, fix a vertical field of view of about 70 degrees,
choose a far and near plane value, and select an aspect ratio that is equal to the ratio
between the current drawable width and height of our Metal view.

float aspect = drawableSize.width / drawableSize.height;
float fov = (2 * M_PI) / 5;
float near = 1;
float far = 100;
matrix_float4x4 projectionMatrix = matrix_float4x4_perspective(aspect, fov,

near, far);

We now have a sequence of matrices that will move us all the way from object space
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to clip space, which is the space that Metal expects the vertices returned by our ver-
tex shader to be in. Multiplying all of these matrices together produces a model-view-
projection (MVP) matrix, which is what we will actually pass to our vertex shader so that
each vertex can be multiplied by it on the GPU.

The Perspective Divide: From Clip Space to NDC

In the case of perspective projection, w component is calculated so that the perspective
divide produces foreshortening, the phenomenon of farther objects being scaled down
more.

After we hand a projected vertex to Metal from our vertex function, it divides each com-
ponent by the w component, moving from clip-space coordinates to normalized device
coordinates (NDC), after the relevant clipping is done against the viewing volume bounds.
Metal’s NDC space is a cuboid [−1, 1]×[−1, 1]×[0, 1], meaning that x and y coordinates
range from -1 to 1, and z coordinates range from 0 to 1 as we move away from the camera.

The Viewport Transform: From NDC to Window Coordinates

In order to map from the half-cube of NDC onto the pixel coordinates of a view, Metal
does one final internal transformation by scaling and biasing the normalized device coor-
dinates such that they cover the size of the viewport. In all of our sample code, the view-
port is a rectangle covering the entire view, but it is possible to resize the viewport such
that it covers only a portion of the view.

3D Rendering in Metal

Uniforms

A uniform is a value that is passed as a parameter to a shader that does not change over
the course of a draw call. From the point of view of a shader, it is a constant.

In the following chapters, we will bundle our uniforms together in a custom structure.
Even though we only have one such value for now (the MVP matrix), we will establish
the habit now:

typedef struct
{

matrix_float4x4 modelViewProjectionMatrix;
} MBEUniforms;
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Since we are animating our cube, we need to regenerate the uniforms every frame, so
we put the code for generating the transformations and writing them into a buffer into a
method on the renderer class named -updateUniforms.

The Vertex Shader

Now that we have some of the foundational math for 3D drawing in our toolbox, let’s
discuss how to actually get Metal to do the work of transforming vertices.

Our vertex shader takes a pointer to an array of vertices of type Vertex, a struct declared
in the shader source. It also takes a pointer to a uniform struct of type Uniforms. The
definition of these types are:

struct Vertex
{

float4 position [[position]];
float4 color;

};

struct Uniforms
{

float4x4 modelViewProjectionMatrix;
};

The vertex shader itself is straightforward. In order to find the clip-space coordinates of
the vertex, it multiplies the position by the MVP matrix from the uniforms and assigns
the result to the output vertex. It also copies the incoming vertex color to the output ver-
tex without modification.

vertex Vertex vertex_project(device Vertex *vertices [[buffer(0)]],
constant Uniforms *uniforms [[buffer(1)]],
uint vid [[vertex_id]])

{
Vertex vertexOut;
vertexOut.position = uniforms->modelViewProjectionMatrix *

vertices[vid].position;
vertexOut.color = vertices[vid].color;

return vertexOut;
}

Notice that we are using two different address space qualifiers in the parameter list of
the function: device and constant. In general, the device address space should be
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used when indexing into a buffer using per-vertex or per-fragment offset such as the
parameter attributed with vertex_id. The constant address space is used when many
invocations of the function will access the same portion of the buffer, as is the case when
accessing the uniform structure for every vertex.

The Fragment Shader

The fragment shader is identical to the one used in the previous chapter:

fragment half4 fragment_flatcolor(Vertex vertexIn [[stage_in]])
{

return half4(vertexIn.color);
}

Preparing the Render Pass and Command Encoder

Each frame, we need to configure the render pass and command encoder before issuing
our draw calls:

[commandEncoder setDepthStencilState:self.depthStencilState];
[commandEncoder setFrontFacingWinding:MTLWindingCounterClockwise];
[commandEncoder setCullMode:MTLCullModeBack];

The depthStencilState property is set to the previously-configured stencil-depth state
object.

The front-face winding order determines whether Metal considers faces with their vertices
in clockwise or counterclockwise order to be front-facing. By default, Metal considers
clockwise faces to be front-facing. The sample data and sample code prefer counterclock-
wise, as this makes more sense in a right-handed coordinate system, so we override the
default by setting the winding order here.

The cull mode determines whether front-facing or back-facing triangles (or neither)
should be discarded (culled). This is an optimization that prevents triangles that cannot
possibly be visible from being drawn.

Issuing the Draw Call

The renderer object sets the necessary buffer properties on the render pass’ argument
table, then calls the appropriate method to render the vertices. Since we do not need to
issue additional draw calls, we can end encoding on this render pass.
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[renderPass setVertexBuffer:self.vertexBuffer offset:0 atIndex:0];

NSUInteger uniformBufferOffset = sizeof(MBEUniforms) * self.bufferIndex;
[renderPass setVertexBuffer:self.uniformBuffer offset:uniformBufferOffset

atIndex:1];

[renderPass drawIndexedPrimitives:MTLPrimitiveTypeTriangle
indexCount:[self.indexBuffer length] / sizeof(MBEIndex)
indexType:MBEIndexType
indexBuffer:self.indexBuffer
indexBufferOffset:0];

[renderPass endEncoding];

As we saw in the previous chapter, the first parameter tells Metal what type of primi-
tive we want to draw, whether points, lines, or triangles. The rest of the parameters tell
Metal the count, size, address, and offset of the index buffer to use for indexing into the
previously-set vertex buffer.

The Sample Project

The sample code for this chapter is in the 04-DrawingIn3D directory. Bringing together
everything we learned above, it renders a pulsing, rotating cube in glorious 3D.
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